首页> 外文OA文献 >A Two-Streamed Network for Estimating Fine-Scaled Depth Maps from Single RGB Images
【2h】

A Two-Streamed Network for Estimating Fine-Scaled Depth Maps from Single RGB Images

机译:用于估计单个精细尺度深度图的双流网络   RGB图像

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Estimating depth from a single RGB image is an ill-posed and inherentlyambiguous problem. State-of-the-art deep learning methods can now estimateaccurate 2D depth maps, but when the maps are projected into 3D, they lacklocal detail and are often highly distorted. We propose a fast-to-traintwo-streamed CNN that predicts depth and depth gradients, which are then fusedtogether into an accurate and detailed depth map. We also define a novel setloss over multiple images; by regularizing the estimation between a common setof images, the network is less prone to over-fitting and achieves betteraccuracy than competing methods. Experiments on the NYU Depth v2 dataset showsthat our depth predictions are competitive with state-of-the-art and lead tofaithful 3D projections.
机译:从单个RGB图像估计深度是一个不适定且本质上模棱两可的问题。先进的深度学习方法现在可以估算出准确的2D深度图,但是当将这些图投影到3D时,它们缺乏局部细节,并且通常会高度失真。我们提出了一种快速训练的双流CNN,可预测深度和深度梯度,然后将它们融合在一起形成准确而详细的深度图。我们还在多个图像上定义了新颖的设置。通过对一组通用图像之间的估计进行正则化,与竞争方法相比,该网络不太容易过度拟合,并且可以实现更好的准确性。在NYU Depth v2数据集上进行的实验表明,我们的深度预测与最新技术具有竞争性,并且可以实现可靠的3D投影。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号